期刊专题

10.3969/j.issn.1671-6906.2012.03.005

基于二维稀疏表示和范数优化的织物疵点分类研究

引用
针对一维压缩采样丢失图像的结构信息,并带来识别精度损失的问题,提出了二维压缩采样的方法.利用一组稀疏基对疵点原始数据进行感知得到稀疏化数据,将织物疵点数据用二维稀疏表示,再利用范数优化的方法实现压缩数据的准确重建,根据稀疏基的不同得到织物疵点的不同分类.该方法解决了采集数据的泛滥和传感器的浪费,降低了计算的复杂度,有利于织物疵点的分类研究,进而为机器视觉识别织物疵点打下理论基础.

二维稀疏、织物疵点、范数优化、分类

23

TP391.4(计算技术、计算机技术)

河南省科技攻关计划项目0721002210032

2012-10-29(万方平台首次上网日期,不代表论文的发表时间)

共5页

24-28

暂无封面信息
查看本期封面目录

中原工学院学报

1671-6906

41-1341/T

23

2012,23(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn