10.19656/j.cnki.1002-2406.20230907
基于预训练模型及条件随机场的中医医案命名实体识别
目的:通过建立一种基于预训练模型及条件随机场(CRF)的神经网络,解决目前中医医案命名实体识别效率一般的问题.方法:人工标注所选中医医案的10类命名实体作为训练集和验证集,并构建基于BERT、RoBERTa、ALBERT及CRF的神经网络,以探究对于中医医案命名实体识别任务的最佳预训练模型及CRF对其贡献大小.结果:基于RoBERTa-CRF构建的神经网络在中医医案命名实体识别任务中的性能最优,其对命名实体识别的整体准确率为99.33%,精确率为98.24%,召回率为98.51%,F1分数为98.38%.结论:基于RoBERTa-CRF构建的神经网络能有效实现中医医案命名实体识别,解决其效率一般的问题,并且通过设置恰当的分层学习率,CRF能有效处理命名实体标签间的依赖关系,可为中医医案的高价值数据挖掘奠定的坚实基础.
命名实体识别、预训练模型、条件随机场、中医医案
40
TP391;TP183;TP242.6
2023-10-13(万方平台首次上网日期,不代表论文的发表时间)
共8页
38-45