期刊专题

10.19656/j.cnki.1002-2406.20230907

基于预训练模型及条件随机场的中医医案命名实体识别

引用
目的:通过建立一种基于预训练模型及条件随机场(CRF)的神经网络,解决目前中医医案命名实体识别效率一般的问题.方法:人工标注所选中医医案的10类命名实体作为训练集和验证集,并构建基于BERT、RoBERTa、ALBERT及CRF的神经网络,以探究对于中医医案命名实体识别任务的最佳预训练模型及CRF对其贡献大小.结果:基于RoBERTa-CRF构建的神经网络在中医医案命名实体识别任务中的性能最优,其对命名实体识别的整体准确率为99.33%,精确率为98.24%,召回率为98.51%,F1分数为98.38%.结论:基于RoBERTa-CRF构建的神经网络能有效实现中医医案命名实体识别,解决其效率一般的问题,并且通过设置恰当的分层学习率,CRF能有效处理命名实体标签间的依赖关系,可为中医医案的高价值数据挖掘奠定的坚实基础.

命名实体识别、预训练模型、条件随机场、中医医案

40

TP391;TP183;TP242.6

2023-10-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

38-45

暂无封面信息
查看本期封面目录

中医药信息

1002-2406

23-1194/R

40

2023,40(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn