期刊专题

拆项在数列中的应用

引用
形如an=f(n)×qn(其中f(n)是关于n的多项式)的数列可用错位相减法求和,但f(n)的次数较高时用错位相减法比较麻烦.下面就来探讨拆项在相关数列问题中的应用. 一、拆项在数列求和中的应用 1.可行性分析 如果能找到一个数列{bn},使得an =bn+1-bn,那么数列{an}的前n项和Sn=a1 +a2+…+an=(b2-b1)+(b3-b2)+…+(bn+1-b1)一般地,当an=bn+k-bn或an=bn-bn+k(其中n∈N+,k∈N+,且k为常数)时,都可快速求和.

拆项、错位相减、可行性分析、应用、数列问题、数列求、多项式、常数

O17;O15

2013-08-15(万方平台首次上网日期,不代表论文的发表时间)

共1页

48

相关文献
评论
暂无封面信息
查看本期封面目录

中学教学参考

1674-6058

45-1372/G4

2013,(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn