期刊专题

10.3321/j.issn:0496-3490.2007.10.015

利用神经网络提取棉花叶片数字图像氮素含量的初步研究

引用
选取6种输入向量组合,利用线性网络、BP网络以及径向基网络等3种神经网络模型进行比较研究,筛选最适宜网络模型和最佳输入组合,建立叶片数字图像彩色信息和叶片氮含量的关系模型,探索利用神经网络技术获取叶片数字图像信息的方法.结果表明,径向基网络在利用数字图像(B,H,G-R,G/R)指标作为网络输入向量时,能够实现获取棉花叶片数字图像氮含量的目标.径向基网络训练的180组样本的训练精度均达到极显著水平(r = 0.9022**),30组测试样本的预测值与实测值也达到极显著相关(r = 0.8674**),径向基网络和(B,H,G-R,G/R)向量是一种适合本研究的数学模型.对利用神经网络提取棉花叶片数字图像氮含量技术的初步探索,拓展了神经网络和数字图像技术在农业生产中的应用.

数字图像、线性网络、BP神经网络、径向基网络、氮素含量

33

S5(农作物)

国家高技术研究发展计划863计划2006AA10Z207;2006AA10A302

2007-11-26(万方平台首次上网日期,不代表论文的发表时间)

共5页

1662-1666

暂无封面信息
查看本期封面目录

作物学报

0496-3490

11-1809/S

33

2007,33(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn