期刊专题

10.3321/j.issn:1002-008X.2008.12.014

目标识别中特征空间核矩阵收缩方法

引用
线性分类与非线性分类是模式识别领域的基础性课题.核方法处理非线性分类问题有其独特的优势,核矩阵反映了输入样本在特征空间的位置关系,决定了样本在特征空间的可分性.针对特征空间线性不可分问题,提出了特征空间核矩阵收缩的新概念和新方法.首先定义了特征空间中样本数据的收缩因子以及样本数据相对于各类类心的收缩方法;然后理论推导得到样本数据收缩后的核矩阵,并且证明收缩后的数据可分性能更优.最后的实验从核矩阵的性能度量以及核矩阵的分类性能两个方面验证了收缩后的核矩阵性能比收缩前性能更优.

核方法、核矩阵、特征空间、收缩因子

18

TP3;TN9

国家自然科学基金资助项目60572138

2009-02-23(万方平台首次上网日期,不代表论文的发表时间)

共7页

1467-1473

相关文献
评论
暂无封面信息
查看本期封面目录

自然科学进展

1002-008X

11-3852/N

18

2008,18(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn