期刊专题

10.20056/j.cnki.ZNMDZK.20240114

基于CAM U-Net的肺结节分割方法

引用
肺癌作为世界上死亡率最高的癌症之一,严重威胁人类的生命安全,早发现早治疗可以提高患者的生存率.为了准确地分割出肺部CT图像中的肺结节区域,提出一种基于CAM U-Net的肺结节分割方法.在U-Net网络基础上,通过添加通道注意力模块CAM,使网络中的特征聚焦于关键有用的信息,减弱甚至消除无关信息的干扰,进而提升模型的性能.在LIDC-IDRI肺结节公开数据集上的实验结果表明:该算法的交并比、Dice相似系数、准确率、和召回率分别为82.04%、89.24%、88.61%和91.28%.与其他肺结节分割方法相比,该算法具有更好的分割性能.

肺结节、分割、U-Net网络、通道注意力模块

43

TP391.4(计算技术、计算机技术)

湖北省自然科学基金资助项目;中央高校基本科研业务费专项资金项目

2024-01-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

104-111

相关文献
评论
暂无封面信息
查看本期封面目录

中南民族大学学报(自然科学版)

1672-4321

42-1705/N

43

2024,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn