期刊专题

10.20056/j.cnki.ZNMDZK.20230209

基于局部搜索贝叶斯算法的Xgboost参数选择

引用
提出了一种基于密度的局部搜索贝叶斯算法的Xgboost参数选择方法(BOA-DLS-Xgboost).基于密度的局部搜索贝叶斯算法(BOA-DLS)在选择初始种群时采用拉丁超立方抽样(LHS),使初始种群更均匀地分布于参数空间;每次探索过程是在LHS抽样点的基础上,对稀疏点和当前最优解周围进行局部搜索得到待采样集,以提高解的收敛速度和精度.仿真实验结果表明:BOA-DLS比BOA具有更好的优化性能.利用BOA-DLS对Xgboost算法的参数进行优化,通过与四种经典集成学习算法以及BOA-Xgboost算法比较,所提出的BOA-DLS-Xgboost算法在参数优化方面的应用是合理有效的.

Xgboost算法、贝叶斯优化算法、密度、参数选择

42

O235;TP181(控制论、信息论(数学理论))

国家自然科学基金;中国地质大学武汉基础研究基金项目

2023-03-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

201-207

相关文献
评论
暂无封面信息
查看本期封面目录

中南民族大学学报(自然科学版)

1672-4321

42-1705/N

42

2023,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn