10.14067/j.cnki.1673-923x.2024.06.003
基于Sentinel-1和Sentinel-2数据融合的森林林龄反演和动态监测
[目的]在Google Earth Engine(GEE)云平台上借助其强大的计算和数据存储能力,融合多源遥感数据对森林林龄进行遥感反演和动态监测.[方法]融合 2017-2023 年间Sentinel-1、Sentinel-2 及高程数据,通过随机森林(Random forest,RF)分类获取土地覆盖信息,并进一步提取森林的分布和面积,同时构建时间序列植被指数来准确提取森林变化区域.基于森林资源清查数据和融合的多源遥感数据,在GEE上构建RF回归、分类回归树(Cart)以及梯度提升回归树(Gradient tree boost,GTB)3 种回归模型,用于杉木组、马尾松组、毛竹林、硬阔叶树组以及其他类树种组的 2018 年林龄遥感反演,并估算出 2017 年和 2023 年的林龄信息,以揭示林龄和龄组在 2017-2023 年的动态变化情况.[结果]1)2017-2023 年,研究区森林面积的整体变化总计113.93 km2,此间森林的减少和更新并存,其空间分布特征呈现出明显的区域差异.具体而言,森林面积变化多发生于靠近城区和低海拔地区,且靠近城区的森林面积减少往往不再恢复至森林;2)在 5 种不同树种组构建的3种模型中,RF回归模型的林龄反演结果最佳,平均R2 为0.845,平均RMSE为5.32 a,其中毛竹林反演精度最高,R2 为 0.863,RMSE为 2.411 a;3)2017-2023 年,研究区林龄在 40 a以下的森林由 54.59%减少至 51.06%,其中龄组变化最显著为杉木组成熟林,面积增加了 38.88%.[结论]在GEE上融合多源遥感数据进行林龄反演和动态监测具有重要的应用潜力,本研究结果可为使用云平台及哨兵系列卫星数据对森林资源长时间序列的林龄反演和动态监测的应用提供参考和借鉴.
数据融合、遥感反演、林龄、动态监测、Sentinel-1、Sentinel-2、Google Earth Engine
44
S771.8(森林工程、林业机械)
国家自然科学基金;林业科学技术推广项目;中央高校基本科研业务费专项
2024-09-19(万方平台首次上网日期,不代表论文的发表时间)
共11页
19-29