期刊专题

10.11817/j.issn.1672-7207.2018.08.016

强噪源干扰下的滚动轴承复合故障分离方法研究

引用
针对强背景噪声干扰下的轴承复合故障难以准确分离提取,噪声与复合故障各成分间相互影响容易造成误诊或漏诊的问题,提出基于变分模态分解(VMD)及最大相关峭度解卷积(MCKD)的复合故障分离方法.首先对复合故障信号进行变分模态分解并根据峭度及相关系数准则重构信号作为前置滤噪处理,然后选取合理的滤波器长度及解卷积周期对重构信号进行最大相关峭度解卷积运算以实现故障特征分离,并结合1.5维能量谱强化信号瞬时冲击特征的优点,准确实现复合故障诊断,最后通过噪源干扰下的外圈、内圈复合故障实测信号分析验证该方法的有效性.研究结果表明:VMD方法能够有效滤除噪声干扰,且其滤噪效果比集合经验模态分解(EEMD)方法的滤噪效果好;MCKD方法能够将外圈、内圈故障分离,避免复合故障各成分间的相互干扰;1.5维能量谱能够强化谱图中的瞬时冲击特征.

滚动轴承、复合故障、变分模态分解、最大相关峭度解卷积

49

TH212;TH213.3(起重机械与运输机械)

国家自然科学基金资助项目51777075;中央高校基本科研业务费专项资金资助项目2018QN093

2018-09-19(万方平台首次上网日期,不代表论文的发表时间)

共10页

1950-1959

暂无封面信息
查看本期封面目录

中南大学学报(自然科学版)

1672-7207

43-1426/N

49

2018,49(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn