期刊专题

10.11817/j.issn.1672-7207.2015.05.016

基于多区域划分的模糊支持向量机方法

引用
针对模糊支持向量机(FSVM)方法无法有效定位支持向量,在确定隶属度时易丢失分类信息的问题,提出一种基于多区域划分的FSVM方法。该方法先利用传统SVM获取支持向量的大体位置,作为对FSVM支持向量的近似估计,再进一步融合带负类样本的支持向量域描述(SVDD-neg)模型,对样本空间进行划分,最后根据样本所在的区域按不同的规律确定隶属度。研究结果表明:这种隶属度确定方式不仅能有效削弱野值样本的影响,而且也会提高支持向量的隶属度。与基于样本紧密度以及基于样本到类内超平面距离的FSVM方法相比,该方法具有更好的抗噪性能和泛化能力。

模糊支持向量机、多区域划分、野值、支持向量、隶属度

TP181(自动化基础理论)

国家自然科学基金资助项目61372167@@@@Project61372167 supported by the National Natural Science Foundation of China

2015-07-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

1680-1687

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn