基于争议度的Boosting集成网络样本权值调整算法
神经网络集成AdaBoost算法权值调整策略对于分类正确或分类错误的样本采用统一的权值调整幅度,随着迭代次数的增加,统一的权值调整幅度将导致困难样本权重的过分积累,针对这一问题,提出基于争议度的权值调整策略,并采用的标准机器学习数据库UCI进行仿真实验.实验结果表明:该策略能够在样本权值修正阶段对各训练样本权值进行有区别的修改,即将多次连续分类错误的样本的权值提高幅度进行抑制,在一定程度上避免了困难样本权值过大而导致集成网络泛化性能下降,从而使得各个体分类器在不损失差异度的前提下获得理想的精度,提升集成网络的泛化性能,并具有良好的稳定性.
神经网络集成、差异度、精度、争议度
43
TP183(自动化基础理论)
国家自然科学基金61074153
2013-03-15(万方平台首次上网日期,不代表论文的发表时间)
共6页
4355-4360