期刊专题

10.3969/j.issn.1671-9476.2013.02.031

基于ACO-LSSVM的城市火灾预测

引用
火灾的发生具有不确定性,传统线性模型难对该类典型非线性预测问题进行准确预测.为了提高火灾的预测准确性,提出一种蚁群算法(ACO)优化LSSVM的非线性火灾预测算法(ACO-LSSVM).首先收集火灾发生的历史数据,然后输入LSSVM进行训练,ACO对LSSVM进行动态优化,描述火灾发生的不确定性,从而建立一种非线性火灾预测模型.仿真结果表明:ACO-LSSVM解决了传统火灾预测算法存在的缺陷,提高了火灾的预测精度,准确地刻画了火灾的复杂性、非线性变化的特点.

蚁群优化算法、LSSVM、参数优化、火灾预测

30

TP391(计算技术、计算机技术)

2013-08-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

96-99

相关文献
评论
暂无封面信息
查看本期封面目录

周口师范学院学报

1671-9476

41-1345/Z

30

2013,30(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn