期刊专题

10.3969/j.issn.1672-1497.2017.06.010

基于自适应EEMD样本熵的行星齿轮箱特征提取方法

引用
针对行星齿轮传动故障诊断中的信号故障特征微弱、特征提取困难等问题,提出了基于自适应聚合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和样本熵(Sample Entropy,SE)的行星齿轮箱故障特征提取方法.首先,针对EEMD结果存在较大的盲目性和主观性等问题,提出自适应EEMD方法;然后,使用此方法将行星齿轮箱振动信号分解为若干个固有模态函数(Intrinsic Mode Functions,IMF)分量,通过相关性分析选取含有齿轮状态特征信息的IMF分量并对信号进行重构,计算重构信号样本熵值,以此判断行星齿轮箱的运行状态;最后,对行星齿轮箱故障模拟试验台采集的2种状态振动信号的自适应EEMD样本熵进行求解,并与直接样本熵、EEMD样本熵等特征提取方法对比,验证了自适应EEMD样本熵具有更好的分类能力.

行星齿轮箱、聚合经验模态分解(EEMD)、样本熵(SE)、特征提取

31

TH132.425;TP206+.3

2018-06-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

49-55

相关文献
评论
暂无封面信息
查看本期封面目录

装甲兵工程学院学报

1672-1497

11-3984/E

31

2017,31(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn