10.3760/cma.j.cn112434-20191126-00420
人群肺亚实性结节CT筛查及人工智能应用研究初探
目的:研究并探讨胸部低剂量CT(LDCT)应用于人群肺亚实性结节的筛查情况及人工智能的应用价值。方法:回顾性分析山西省潞安区2015年1月至2017年12月间常规体检行LDCT筛查人群的临床资料,分析统计该地区筛查人群的特征、肺部亚实性结节的检出情况以及检出亚实性结节的独立预测因素,并评价人工智能阅片方法的准确性。结果:该地区人群三轮筛查显示肺亚实性结节检出率分别为0.42%、0.69%和0.92%。完成三轮筛查的人群纳入队列研究(726例),以男性为主(83.2%),中位年龄43岁,47.0%有吸烟史,肺癌家族史(
OR=8.753,95%
CI:1.877~40.816,
P=0.006)是检出亚实性结节的独立预测因素。110 kVp组(656例)模型和人工阅片方法的曲线下面积(
AUC)分别为0.740、0.721,差异无统计学意义(
P=0.502);
NRI=-0.15,
P=0.003,提示模型的准确性差于人工阅片方法。130 kVp组(98例)模型和人工阅片方法的
AUC分别为0.888、0.756,差异无统计学意义(
P=0.128);
NRI=0.19,
P=0.123,提示模型的准确性不亚于人工阅片方法。
结论:该地区常规体检人群亚实性结节检出率为0.42%~0.92%,肺癌家族史是其独立预测因素。人工智能肺结节检出模型的训练集数据参数与实际的应用参数匹配时,其结果具有一定的参考价值。
肺肿瘤、癌症筛查、多层螺旋CT、亚实性结节、人工智能
36
2023-05-30(万方平台首次上网日期,不代表论文的发表时间)
共6页
145-150