期刊专题

10.3760/cma.j.cn115624-20220412-00262

基于随机森林模型内脏脂肪等级相关指标分析

引用
目的:探讨基于随机森林模型分析内脏脂肪等级的相关指标。方法:本研究为横断面研究,选取2021年3—9月在黑龙江省医院健康管理中心进行体检的医院职工(包括在职职工和退休职工)共617例的各项实验室指标以及体成分分析各项指标,按照2∶1的比例将样本分为训练集(411例)和测试集(206例),模型共纳入预测变量110个,使用训练集数据进行随机森林模型构建,测试集数据进行模型验证,选择最优节点数和决策树数目,对构建模型的预测性能进行评价,同时选取重要性在前10位的相对重要因子进行下一步的研究。按内脏脂肪等级,对617名研究对象再次进行分组:内脏脂肪等级正常组和内脏脂肪等级偏高组,进一步分析前10位相对重要因子在组间的差异。结果:随机森林模型的最优节点数为39、决策树数目为300。模型在测试集上的准确率为83.3%、精确率为73.9%、灵敏度为89.4%、特异度为78.7%,其受试者工作特征曲线下面积为0.881(95% CI:0.832~0.931)。模型中前10位相对重要因子依次为:体重指数、性别、年龄、尿酸、红细胞计数、单核细胞计数、C肽、癌胚抗原、糖化血红蛋白、谷氨酰转肽酶。内脏脂肪等级偏高组的体重指数、年龄、尿酸、红细胞计数、单核细胞计数、C肽、癌胚抗原、糖化血红蛋白、谷氨酰转肽酶水平均高于内脏脂肪等级正常组(均 P<0.05);内脏脂肪等级偏高的发生率男性大于女性( P<0.05)。 结论:本研究构建的内脏脂肪等级的随机森林预测模型表现良好,内脏脂肪与机体肝功能、胰岛功能、免疫功能的改变均有关系。

内脏脂肪等级、体重指数、随机森林预测模型、机器学习模型

17

黑龙江省自然科学基金联合引导项目LH2021H069;黑龙江省卫生健康委科研课题20211212020239;Natural Science Foundation of Heilongjiang ProvinceLH2021H069;Research Project of Heilongjiang Provincial Health Commission20211212020239

2023-05-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

41-46

相关文献
评论
暂无封面信息
查看本期封面目录

中华健康管理学杂志

1674-0815

11-5624/R

17

2023,17(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn