10.19902/j.cnki.zgyz.1003-7969.220396
红外光谱快速识别食用植物油种类的研究
为实现食用植物油种类的快速无损识别,为公安实战中打击"食药环"犯罪提供参考,借助衰减全反射-傅里叶变换红外光谱技术对不同类别、品牌食用植物油进行了多层次分类识别工作.采用标准正态变换(SNV)和一阶导数预处理消除基线和其他背景干扰,使得重叠峰发生分离,从而提高检测的分辨率和灵敏度,利 用竞争性自适应重加权算法(CARS)提取特征波长,结合基于布谷鸟搜索算法优化的极限学习机(CS-ELM)模型对不同种类和品牌的食用植物油进行分类识别,同时对比随机森林模型与CARS-CS-ELM融合模型在食用植物油快速分类检测方面的准确率.结果表明,基于CARS-CS-ELM融合模型对3类植物油样本总体进行分类,其分类准确率达到85.19%,其中小磨香油、花生油、玉米油样本训练集的品牌分类准确率依次为92.5%、100%、96.7%,测试集品牌分类准确率均为100%,而随机森林模型的9个品牌食用植物油分类准确率仅为80%.综上,CARS-CS-ELM融合模型对食用植物油快速分类识别效果较好,可为食用植物油的无损快速检验提供一定的参考与借鉴.
食用植物油、红外光谱、特征提取、CARS-CS-ELM、随机森林、分类识别
48
TS227;O657.33(食品工业)
中央高校基本科研业务费专项2021JKF208
2023-08-08(万方平台首次上网日期,不代表论文的发表时间)
共6页
56-61