期刊专题

10.19902/j.cnki.zgyz.1003-7969.220396

红外光谱快速识别食用植物油种类的研究

引用
为实现食用植物油种类的快速无损识别,为公安实战中打击"食药环"犯罪提供参考,借助衰减全反射-傅里叶变换红外光谱技术对不同类别、品牌食用植物油进行了多层次分类识别工作.采用标准正态变换(SNV)和一阶导数预处理消除基线和其他背景干扰,使得重叠峰发生分离,从而提高检测的分辨率和灵敏度,利 用竞争性自适应重加权算法(CARS)提取特征波长,结合基于布谷鸟搜索算法优化的极限学习机(CS-ELM)模型对不同种类和品牌的食用植物油进行分类识别,同时对比随机森林模型与CARS-CS-ELM融合模型在食用植物油快速分类检测方面的准确率.结果表明,基于CARS-CS-ELM融合模型对3类植物油样本总体进行分类,其分类准确率达到85.19%,其中小磨香油、花生油、玉米油样本训练集的品牌分类准确率依次为92.5%、100%、96.7%,测试集品牌分类准确率均为100%,而随机森林模型的9个品牌食用植物油分类准确率仅为80%.综上,CARS-CS-ELM融合模型对食用植物油快速分类识别效果较好,可为食用植物油的无损快速检验提供一定的参考与借鉴.

食用植物油、红外光谱、特征提取、CARS-CS-ELM、随机森林、分类识别

48

TS227;O657.33(食品工业)

中央高校基本科研业务费专项2021JKF208

2023-08-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

56-61

相关文献
评论
暂无封面信息
查看本期封面目录

中国油脂

1003-7969

61-1099/TS

48

2023,48(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn