期刊专题

10.3969/j.issn.1005-5185.2016.03.020

基于块稀疏贝叶斯学习算法的心电数据重构

引用
压缩感知(CS)技术在心电信号上的应用具有低成本、低功耗等优势,但传统的CS算法重构心电信号质量并不理想.本文介绍了一种基于信号块结构内相关性的块稀疏贝叶斯学习(BSBL)CS算法;并对MIT-BIH数据库中心电数据进行实验,结果显示其均方根误差远低于传统CS算法,表明该算法能够高质量重构心电信号.BSBL算法在心电数据上的应用有效降低了对数据的采样频率,从而缓解存储压力并降低功耗.

信号处理、计算机辅助、压缩感知、算法、块稀疏贝叶斯学习

24

TN911.7

2016-08-09(万方平台首次上网日期,不代表论文的发表时间)

共4页

223-226

相关文献
评论
暂无封面信息
查看本期封面目录

中国医学影像学杂志

1005-5185

11-3154/R

24

2016,24(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn