超声图像中基于经验模态分解自动提取内-中膜厚度
目的 为改善传统人工标记测量血管内-中膜厚度(IMT)的准确性和稳定性,提出基于图像分割技术的经验模态分解(EMD)改进算法.方法 采用EMD改进算法去噪,根据血管壁的特点,在其中的极值点插值步骤使用非均匀的二维B样条函数,在水平和垂直方向上控制网格的密度不同,分别满足不同的分辨精度和平滑程度要求,改进了原始的二维EMD算法;然后通过K均值方法从图像中分离出血管腔、血管壁和其他组织,使用数学形态学算法逐步得到最终的内-中膜组织分割结果.结果 改进EMD算法取得了较好的重建和滤波效果,有效克服了超声图像的强噪声和低分辨力对图像分割的限制,整个算法分割比较准确,算法复杂度相对较小.结论 改进EMD算法是在超声图像中自动提取内-中膜的较有潜力的方法,能有效去除超声噪声,同时保留条纹结构的细节和边缘信息,有望于其他强噪声环境下提取条纹结构.
内-中膜厚度、经验模态分解、B样条、K均值
28
TP391(计算技术、计算机技术)
国家重点基础研究发展计划973计划项目2010CB732606
2012-11-01(万方平台首次上网日期,不代表论文的发表时间)
共5页
1387-1391