期刊专题

10.3969/j.issn.1006-5741.2023.01.013

基于深度学习压缩感知技术在子宫T2WI中的对比研究

引用
目的:使用深度学习压缩感知技术行子宫T2WI,通过对综合质量的评估,探讨其在临床应用中的可行性.方法:选取临床女性盆腔检查患者80例,分别应用常规并行采集(PI)和深度学习卷积神经网络压缩感知(CNN-CS)技术行T2WI,各采集40例.通过对运动伪影和组织边界清晰度评分进行评估,以及对子宫内膜、肌层与结合带对比度进行比较.结果:CNN-CS扫描的T2WI图像质量总体评分显著高于PI法(2.75±0.44 vs 2.35±0.53,P<0.05);CNN-CS组子宫内膜、肌层与结合带对比度均优于常规PI组(0.74±0.07 vs 0.60±0.11,P<0.001;0.53±0.11 vs 0.44±0.10,P<0.05);CNN-CS组成像时间小于常规PI组.结论:与常规PI技术成像对比,基于深度学习的CNN-CS技术对子宫T2WI能够减少伪影的影响并提高组织图像对比度,可优化图像质量并减少成像时间.

压缩感知、磁共振成像、深度学习、卷积神经网络、人工智能

29

R445.2(诊断学)

2023-03-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

58-61

暂无封面信息
查看本期封面目录

中国医学计算机成像杂志

1006-5741

31-1700/TH

29

2023,29(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn