期刊专题

10.3969/j.issn.1002-3674.2022.05.007

基于Bagging的阿尔茨海默病进程多分类预测研究

引用
目的 对阿尔茨海默病(Alzheimer′s disease,AD)进程[认知正常(cognitive normal,CN)、早期轻度认知障碍(early mild cognitive impairment,EMCI)、晚期轻度认知障碍(late mild cognitive impairment,LMCI)和AD]进行多分类预测,为制定个性化诊疗方案提供参考.方法 利用阿尔茨海默病神经影像学计划(Alzheimer′s disease neuroimaging initiative,ADNI)数据库中的527例个体的27个变量,进行特征选择筛选特征子集、SMOTE过采样处理类别不平衡后构建两个集成分类模型XGBoost和Bagging,并将分类性能与朴素贝叶斯和K-近邻进行比较.结果 使用经SMOTE过采样后构建的Bagging集成模型准确率最高(94.40%);Bagging对EMCI、LMCI和AD的类准确率较高,分别为100.00%、88.00%和87.00%,Bagging模型性能较优.结论 本文构建的AD进程多分类Bagging模型,不仅可实现直接多分类,而且有较高的准确率,可为临床AD的诊疗工作提供借鉴.

阿尔茨海默病、引导聚集算法、多分类

39

R195(保健组织与事业(卫生事业管理))

国家自然科学基金81973154

2022-12-01(万方平台首次上网日期,不代表论文的发表时间)

共6页

675-679,684

相关文献
评论
暂无封面信息
查看本期封面目录

中国卫生统计

1002-3674

21-1153/R

39

2022,39(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn