期刊专题

10.3969/j.issn.1002-3674.2022.04.014

基于重采样和Voting异质集成的分类模型在肝硬化并发肝性脑病风险预测中的探索性研究

引用
目的 针对肝硬化并发肝性脑病风险预测的因素具有高维性、冗余性及类间不均衡的特征,研究变量筛选后的重采样和Voting异质集成分类模型的风险预测性能.方法 收集2006年1月-2015年12月某三甲医院消化内科肝硬化住院患者950例,68例并发肝性脑病,采用logistic逐步回归进行风险预报因子初筛;再采用SMOTE重采样技术及其改进算法处理不平衡数据;最后采用SVM、MLP、随机森林以及综合以上三种算法预测结果的Voting异质集成分类算法构建肝硬化并发肝性脑病的风险预测模型.结果 logistic回归筛选了7个风险预报因子,采用重采样技术后的分类模型的预测性能整体上优于不平衡数据模型,以SVM-SMOTE最优;相同重采样技术后的Voting异质集成与随机森林分类模型的预测性能优于SVM和MLP,其中Voting异质集成分类模型的性能略高于随机森林.综合各模型性能可知,采用SVM-SMOTE重采样技术处理的Voting异质集成模型在识别肝硬化并发肝性脑病的效果最好,测试集各评价指标值分别为:AUC=0.947、准确率=0.877、精确度=0.898、召回率=0.855、F1分数=0.876.结论 针对肝硬化并发肝性脑病风险预测因素的高维性、冗余性及类间不均衡的特征,本文所提出的基于logistic逐步回归特征筛选、SVM-SMOTE重采样的Voting异质集成模型的预测效果较为满意.

肝性脑病、不平衡数据、重采样、集成学习、分类预测

39

R195.1(保健组织与事业(卫生事业管理))

国家自然科学基金;山西省重点研发计划项目

2022-10-17(万方平台首次上网日期,不代表论文的发表时间)

共5页

545-549

相关文献
评论
暂无封面信息
查看本期封面目录

中国卫生统计

1002-3674

21-1153/R

39

2022,39(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn