期刊专题

10.3969/j.issn.1002-3674.2022.03.012

加权随机森林和代价敏感支持向量机与心衰患者死亡风险评估

引用
目的 探讨加权随机森林和代价敏感支持向量机模型在慢性心衰死亡风险评估中的应用.方法 利用AUC-RF自变量筛选方法选出与心衰死亡的相关因素,将选出的变量作为输入变量,预后有无死亡作为结局变量构建传统随机森林、支持向量机、logistic回归、加权随机森林和代价敏感支持向量机分类预测模型.结果 AUC-RF筛选出的变量中有中枢系统疾病史、肾功能不全史、心包积液、BMI、中性粒细胞比值、肾小球滤过率、N端前脑钠肽等指标重要度较高,提示这些指标或有临床意义.评价指标有灵敏度、特异度、准确度、G-means、F-measure和AUC值,logistic模型评价指标的中位数分别为:78.46%、63.19%、81.4%、0.6933、0.467和0.7003;加权随机森林评价指标分别为:78.08%、82.74%、85.96%、0.8086、0.4853和0.8109;代价敏感支持向量机评价指标分别为:75.38%、72.49%、88.8%、0.7402、0.4749和0.7940.结论 加权随机森林模型对心衰患者预后死亡预测性能较高,该模型有助于临床医生识别心衰死亡危险因素,具有较高应用价值.

慢性心衰、疾病预后、加权随机森林、代价敏感支持向量机

39

R541(心脏、血管(循环系)疾病)

国家自然科学基金81872714

2022-09-20(万方平台首次上网日期,不代表论文的发表时间)

共5页

381-384,388

相关文献
评论
暂无封面信息
查看本期封面目录

中国卫生统计

1002-3674

21-1153/R

39

2022,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn