期刊专题

基于特征选择与残差融合的肝肿瘤分割模型

引用
目的 高效的肝肿瘤计算机断层扫描(computed tomography,CT)图像自动分割方法是临床实践的迫切需求,但由于肝肿瘤边界不清晰、体积相对较小且位置无规律,要求分割模型能够细致准确地发掘类间差异.对此,本文提出一种基于特征选择与残差融合的2D肝肿瘤分割模型,提高了2D模型在肝肿瘤分割任务中的表现.方法 该模型通过注意力机制对U-Net瓶颈特征及跳跃链接进行优化,为符合肝肿瘤分割任务特点优化传统注意力模块进,提出以全局特征压缩操作(global feature squeeze,GFS)为基础的瓶颈特征选择模块,即全局特征选择模块(fea-ture selection module,FS)和邻近特征选择模块(neighbor feature selection module,NFS).跳跃链接先通过空间注意力模块(spatial attention module,SAM)进行特征重标定,再通过空间特征残差融合(spatial feature residual fusion module,SFRF)模块解决前后空间特征的语义不匹配问题,在保持低复杂度的同时使特征高效表达.结果 在LiTS(liver tumor segmentation)公开数据集上进行组件消融测试并与当前方法进行对比测试,在肝脏及肝肿瘤分割任务中的平均Dice得分分别为96.2%和68.4%,与部分2.5D和3D模型的效果相当,比当前最佳的2D肝肿瘤分割模型平均Dice得分高0.8%.结论 提出的FSF-U-Net(feature selection and residual fusion U-Net)模型通过改进的注意力机制与优化U-Net模型结构的方法,使2D肝肿瘤分割的结果更加准确.

肝肿瘤自动分割;注意力机制;U-Net结构;特征选择;残差融合

27

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;云南省计算机技术应用重点实验室开放基金

2022-03-25(万方平台首次上网日期,不代表论文的发表时间)

共12页

838-849

相关文献
评论
暂无封面信息
查看本期封面目录

中国图象图形学报

1006-8961

11-3758/TB

27

2022,27(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn