迁移学习在医学图像分类中的研究进展
医学影像作为医疗数据的主要载体,在疾病预防、诊断和治疗中发挥着重要作用.医学图像分类是医学影像分析的重要组成部分.如何提高医学图像分类效率是一个持续的研究问题.随着计算机技术进步,医学图像分类方法已经从传统方法转到深度学习,再到目前热门的迁移学习.虽然迁移学习在医学图像分类中得到较广泛应用,但存在不少问题,本文对该领域的迁移学习应用情况进行综述,从中总结经验和发现问题,为未来研究提供线索.1)对基于迁移学习的医学图像分类研究的重要文献进行梳理、分析和总结,概括出3种迁移学习策略,即迁移模型的结构调整策略、参数调整策略和从迁移模型中提取特征的策略;2)从各文献研究设计的迁移学习过程中提炼共性,总结为5种迁移学习模式,即深度卷积神经网络(deep convolution neural network,DCNN)模式、混合模式、特征组合分类模式、多分类器融合模式和二次迁移模式.阐述了迁移学习策略和迁移学习模式之间的关系.这些迁移学习策略和模式有助于从更高的抽象层次展现迁移学习应用于医学图像分类领域的情况;3)阐述这些迁移学习策略和模式在医学图像分类中的具体应用,分析这些策略及模式的优点、局限性及适用场景;4)给出迁移学习在医学图像分类应用中存在的问题并展望未来研究方向.
医学图像;图像分类;迁移学习;迁移学习策略;迁移学习模式
27
TP391(计算技术、计算机技术)
国家自然科学基金;国家自然科学基金
2022-03-25(万方平台首次上网日期,不代表论文的发表时间)
共15页
672-686