深度卷积神经网络图像语义分割研究进展
在计算机视觉领域中,语义分割是场景解析和行为识别的关键任务,基于深度卷积神经网络的图像语义分割方法已经取得突破性进展.语义分割的任务是对图像中的每一个像素分配所属的类别标签,属于像素级的图像理解.目标检测仅定位目标的边界框,而语义分割需要分割出图像中的目标.本文首先分析和描述了语义分割领域存在的困难和挑战,介绍了语义分割算法性能评价的常用数据集和客观评测指标.然后,归纳和总结了现阶段主流的基于深度卷积神经网络的图像语义分割方法的国内外研究现状,依据网络训练是否需要像素级的标注图像,将现有方法分为基于监督学习的语义分割和基于弱监督学习的语义分割两类,详细阐述并分析这两类方法各自的优势和不足.本文在PASCAL VOC (pattern analysis,statistical modelling and computational learning visual object classes) 2012数据集上比较了部分监督学习和弱监督学习的语义分割模型,并给出了监督学习模型和弱监督学习模型中的最优方法,以及对应的MIoU(mean intersection-over-union).最后,指出了图像语义分割领域未来可能的热点方向.
语义分割、卷积神经网络、监督学习、弱监督学习
25
TP391(计算技术、计算机技术)
北京市教育委员会科技发展计划项目;北京市自然科学基金项目
2020-08-03(万方平台首次上网日期,不代表论文的发表时间)
共22页
1069-1090