抗模糊特征提取策略下的车标识别
目的 现有的车标识别方法尽管取得了不错的识别效果,但最终的识别率容易遇到瓶颈,很难得到提升.车标识别是智能交通系统中至关重要的一部分,识别率的微小提升也能带来巨大的社会价值.通过挖掘与分析车标识别中潜在的问题和难点,发现未能得到正确分类的图像大部分为模糊车标图像.针对车标图像中存在的成像模糊等情况,本文提出一种基于抗模糊特征提取的车标识别方法.方法 构建车标图像金字塔模型,分别提取图像的抗纹理模糊特征和抗边缘模糊特征.抗纹理模糊特征的提取使用局部量化的LPQ(local phase quantization)模式,可以增强原始特征的鲁棒性,抗边缘模糊特征的提取基于局部块弱梯度消除的HOG(histogram of oriented gradient)特征提取方法,可以在描述车标图像边缘梯度信息的同时,提升特征的抗模糊能力.最后利用CCA(canonical correlation analysis)方法进行两种抗模糊特征的融合并用于后续的降维与分类.结果 本文方法在多个数据集上均取得了很好的识别效果,在20幅训练样本下,本文方法在公开车标数据集HFUT-VL(vehicle logo dataset from Hefei University of Technology)上取得了99.04%的识别率,在本文构建的模糊车标数据集BVL(blurring vehicle logo dataset)上也取得了97.19%的识别率.而在难度较大的XMU (Xiamen University vehicle logo dataset)上,本文方法在100幅训练样本下也达到了96.87%的识别率,识别效果高于一些具有较好表现的车标识别方法,表现出很强的鲁棒性和抗模糊性.结论 本文方法提高了对成像质量欠缺的车标图像的识别能力,从而提升了整体识别效果,更符合实际应用中车标识别的需求.
车标识别、梯度特征、抗模糊特征、局部量化、图像金字塔
25
TP391.41(计算技术、计算机技术)
国家自然科学基金项目;安徽省重点研究;开发计划项目
2020-06-22(万方平台首次上网日期,不代表论文的发表时间)
共13页
605-617