双特征模型核相关滤波目标跟踪算法
目的 基于深度学习的目标跟踪算法,利用卷积深层作为特征,虽然精度高但无法做到实时跟踪;基于相关滤波的跟踪算法,利用HOG(histogram of oriented gridients)、CN(color name)和颜色直方图作为特征,速度快但精度较差.为兼顾目标跟踪算法的实时性与准确性,提出了一种基于双模型核相关滤波算法.方法 提出了自适应的双特征模型选择机制,主特征模型采用浅层纹理特征HOG,辅助特征模型采用包含深层语意信息的CNN(convolutional neural networks)特征,二者协同作用,产生更加稳定的相关滤波器.为了提高算法的速度,采用主成分分析(PCA)技术对高维的CNN特征进行降维,并通过尺度优化、最优解求解方式优化等方法提高跟踪算法的准确性.结果 在公开数据集OTB-2013上,本文算法与目前先进且速度能达到实时的SiamFC(fully-convolutional Siamese networks)、MEEM (multiple experts using entropy minimization)、SAMF (scale adaptive multiple features)、DSST(discriminative scale space tracking)等跟踪算法进行比较,一次成功率(OPE)结果显示,本文算法在距离精准度指标中综合排名第一,与KCF (kemel correlation filter)算法相比,本文算法的距离精准度提高了25.2%,重叠成功率提高了25.6%,平均速度达到38帧/s.结论 本文提出的双模型自适应机制,针对主特征模型的置信响应自适应调用最优模型策略,并且实时更新模型,在综合考虑跟踪准确性和跟踪实时性的情况下,本文提出的目标跟踪算法的性能优于目前的跟踪算法.
目标跟踪、自适应特征、卷积神经网络、相关滤波、主成分分析
24
TP391(计算技术、计算机技术)
国家自然科学基金项目61973058
2020-03-18(万方平台首次上网日期,不代表论文的发表时间)
共17页
2183-2199