期刊专题

多尺度红外超像素图像模型的小目标检测

引用
目的 复杂背景中的红外小目标检测易受背景杂波与噪声的干扰,直接利用现有的低秩约束与稀疏表示联合模型存在准确率低、虚警率高及检测速度慢等不足.为了解决这些问题,提出一种基于多尺度红外超像素图像模型的小目标检测方法.方法 首先,采用超像素方法分割原始红外图像,得到无重叠区域的超像素图像,充分利用红外图像的局部空间相关性;然后,引入多尺度理论,融合多个不同尺度下检测的目标图像,增强该方法检测不同尺寸目标的稳健性.结果 针对多幅不同场景下的红外小目标图像进行了实验验证,并选取信杂比增益、背景抑制因子及检测时间作为定量评价指标,以此衡量背景抑制效果及算法运行速度.大量实验结果表明,与Top-Hat、Max-Median、二维最小均方、局部显著性图、红外块图像、加权红外块图像等方法相比,本文方法能有效地去除各种干扰,在背景抑制方面具有更好的效果,且所得背景抑制因子为其他方法的数十倍;与同类方法相比,红外超像素图像模型减少了至少78.2%的检测时间.结论 本文将超像素图像分割与多尺度理论引入低秩约束与稀疏表示联合模型,能够取得更好的背景抑制效果,并且可以适应不同大小目标的检测,实现复杂背景中红外小目标的准确检测.

小目标检测、红外图像、低秩约束、稀疏表示、超像素、多尺度

24

TN911.73;TP391.41

国家自然科学基金项目;中国科学院光谱成像技术重点实验室开放基金项目

2020-03-18(万方平台首次上网日期,不代表论文的发表时间)

共15页

2159-2173

暂无封面信息
查看本期封面目录

中国图象图形学报

1006-8961

11-3758/TB

24

2019,24(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn