多先验特征与综合对比度的图像显著性检测
目的 图像的显著性检测在计算机视觉中应用非常广泛,现有的方法通常在复杂背景区域下表现不佳,由于显著性检测的低层特征并不可靠,同时单一的特征也很难得到高质量的显著图.提出了一种通过增加特征的多样性来实现显著性检测的方法.方法 在高层先验知识的基础上,对背景先验特征和中心先验特征重新进行了定义,并考虑人眼视觉一般会对暖色调更为关注,从而加入颜色先验.另外在图像低层特征上使用目前较为流行的全局对比度和局部对比度特征,在特征融合时针对不同情况分别采取线性和非线性的一种新的融合策略,得到高质量的显著图.结果 在MSRA-1000和DUT-OMRON两个公开数据库进行对比验证,实验结果表明,基于多先验特征与综合对比度的图像显著性检测算法具有较高的查准率、召回率和F-measure值,相较于RBD算法均提高了1.5%以上,综合性能均优于目前的10种主流算法.结论 相较于基于低层特征和单一先验特征的算法,本文算法充分利用了图像信息,能在突出全局对比度的同时也保留较多的局部信息,达到均匀突出显著性区域的效果,有效地抑制复杂的背景区域,得到更加符合视觉感知的显著图.
复杂背景区域、低层特征、高层先验、背景先验、中心先验、人眼视觉
23
TP391(计算技术、计算机技术)
国家自然科学基金项目51179146National Natural Science Foundation of China51179146
2018-04-09(万方平台首次上网日期,不代表论文的发表时间)
共10页
239-248