期刊专题

10.11834/jig.20151209

对数极坐标系下尺度不变特征点的检测与描述

引用
目的 当前国际流行的SIFT算法及其改进算法在检测与描述特征点时基于高斯差分函数,存在损失图像高频信息的缺陷,从而导致图像匹配时其性能随着图像变形的增加而出现急剧下降.针对SIFT算法及其改进算法的这一缺陷,本研究提出了一种新的无图像信息损失的、在对数极坐标系下的尺度不变特征点检测与描述算法.方法 本研究提出的尺度不变特征点检测与描述算法首先将直角坐标系下以采样点为中心的圆形图块转换为对数极坐标系下的矩形图块,并以此矩形图块为基础对采样点进行特征点检测与描述符提取;该算法使用固定宽度的窗口在采样点的对数极坐标径向梯度图像的logtr轴上进行移动以判断该点是否为特征点并计算该点的特征尺度,并在具有局部极大窗口响应的特征尺度位置处提取特征点的描述符.该算法的描述符基于对数极坐标系下的矩形图块的灰度梯度的幅值与角度,是一个192维向量,并具有对于尺度、旋转、光照等变化的不变性.结果 本研究采用INRIA数据组和Mikolajczyk提出的匹配性能指标对SIFT算法、SURF算法和提出的尺度不变特征点检测与描述算法进行比较.与SIFT算法和SURF算法相比,提出的尺度不变特征点检测与描述算法在对应点数、重复率、正确匹配点数和匹配率等方面均具有一定优势.结论 提出了一种基于对数极坐标系的图像匹配算法,即将直角坐标系下以采样点为中心的圆形图块转换为对数极坐标系下的矩形图块,这样在特征点的检测过程中,可以有效规避SIFT算法因为采用DoG函数而造成的高频信息损失;在描述符提取过程中,对数极坐标系可以有效地减少图像的变化量,从而提高了匹配性能.

计算机视觉、图像匹配、对数极坐标系、尺度不变特征点、描述符

20

TP751.1(遥感技术)

National Natural Science Foundation of China61262043;国家自然科学基金项目61262043;云南省科技计划项目2011FZ029

2016-01-12(万方平台首次上网日期,不代表论文的发表时间)

共13页

1639-1651

相关文献
评论
暂无封面信息
查看本期封面目录

中国图象图形学报

1006-8961

11-3758/TB

20

2015,20(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn