期刊专题

10.11834/jig.20150415

非对称高斯函数的时变体数据特征跟踪及可视化

引用
目的 在传统基于时序曲线的时变体数据特征的识别与跟踪过程中,不仅需要用户具备丰富的先验知识来确定感兴趣特征的时序曲线形状,而且时序曲线段的匹配和抽取过程亦复杂,难以交互,这一定程度上降低了时变体数据可视化及分析效率.提出了一种新的基于高斯时序曲线的时变体数据可视化及分析方法.方法 首先,对时序曲线进行低通滤波,准确地查找极小值点,对时序曲线进行分段;进而,引入非对称高斯函数对时序曲线段进行拟合获得高斯时序曲线;为了进一步方便用户识别感兴趣特征,观察特征在时间域上的演变过程,提供一种便捷的交互技术,由用户单击任一时间步绘制结果图像中感兴趣的特征信息,分析视线方向上的特征可见性,以确定感兴趣特征及其对应的高斯曲线,进而由参数匹配获得所有时间步中感兴趣特征信息.结果 为了验证本文算法的高效性与可行性,对时序仿真的飓风数据进行特征跟踪与交互式可视化,可以看出,本文算法不仅可以准确跟踪飓风中心特征,而且特征分析与可视化效率亦大大提升.结论 相比于传统的时变体数据可视化方法,本文算法不需要用户先验知识的前提下,利用非对称高斯模拟时序曲线变化,进而由高斯参数匹配代替复杂的时序曲线匹配过程,有效地提升了时变体数据可视化及分析效率.

时变体数据、时序曲线、特征跟踪、非对称高斯函数

20

TP301.6(计算技术、计算机技术)

国家自然科学基金项目61303133;中央高校基本科研业务费专项资金2013QNA5010;浙江省公益技术研究工业项目2014C31057;浙江大学CAD&CG国家重点实验室开放课题A1417;国家高技术研究发展计划863基金项目2012AA12A404

2015-05-13(万方平台首次上网日期,不代表论文的发表时间)

共9页

576-584

相关文献
评论
暂无封面信息
查看本期封面目录

中国图象图形学报

1006-8961

11-3758/TB

20

2015,20(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn