期刊专题

改进的多目标图像的水平集分割模型

引用
Guo等人利用n个水平集方程构造n个区域提出一种改进的CV模型(简称 MCV模型),该模型需要的迭代次数很少,提高了图像分割的效率,但其分割结果受初始曲线位置的影响较大,极易陷入局部最优,无法分割复杂图像,且利用传统的Heviside函数无法得到准确的均值信息,因此无法保证数值的稳定性.本文对MCV模型进行改进,先对网像进行预分割得到初始曲线以提高分割效率且能保证分割结果全局最优,构造新的符号函数取代传统的Heviside函数改进MCV模型以保证数值稳定性.对MR图像进行的分割实验表明,其在保证迭代次数较少的同时分割更加准确.

CV模型、水平集、图像分割

15

TP391.41(计算技术、计算机技术)

2010-06-02(万方平台首次上网日期,不代表论文的发表时间)

共7页

617-623

相关文献
评论
暂无封面信息
查看本期封面目录

中国图象图形学报A

1006-8961

11-3758/TB

15

2010,15(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn