期刊专题

10.3969/j.issn.1673-7571.2021.05.008

基于BERT多层网络的医疗实体抽取模型研究

引用
电子病历是由医生根据病人描述和检查结果进行推断总结出来的,是以非结构化文本形式进行存储和管理,是医疗信息化的核心数据资产,其基本信息单元是医疗实体.传统的实体识别方法是基于规则、词典机器学习的方法,这些在性能、效率和准确度上难以满足医疗信息化的发展需求.本文提出基于B E RT的多层网络模型,简称为BBC,并将其应用于克拉玛依市中心医院电子病历信息抽取中,提取腹部超声检查结果中的症状实体.实验结果表明,本文提出的模型显著优于现有的方法,实体预测的F1值提升了2.3%.

电子病历、医疗实体抽取、BERT、多层网络模型

16

R319;TP391(医用一般科学)

2021-06-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

36-40

相关文献
评论
暂无封面信息
查看本期封面目录

中国数字医学

1673-7571

11-5550/R

16

2021,16(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn