10.3969/j.issn.0258-8021.2013.05.06
基于熵和支持向量机的病态嗓音识别
为了更好地分析实际短数据带噪的病态嗓音信号,利用近年来提出的样本熵、多尺度熵、模糊熵和分层熵的方法来提取嗓音的熵特征参数,并借鉴分层分解方法,提出分层多尺度熵和分层模糊熵,分别对测试集39例正常嗓音和36例病态嗓音进行支持向量机(SVM)识别.实验结果表明:三层分层熵、分层多尺度熵、分层模糊熵的识别率和稳定性均较分层前有提高.在耗时较短的情况下,提取2 000点病理嗓音数据的6种熵特征都能达到较好且较稳定的识别率.提取2 000点病理嗓音数据的三层分层模糊熵特征,能得到较好且较稳定的SVM识别率97.33%,较分层前的模糊熵特征识别率提高约4.00%.熵分析方法可推进病态嗓音研究向临床的应用,为临床分析诊断实时、短数据的带噪病理嗓音提供一定的参考.
病态嗓音、模糊熵、分层熵、支持向量机
32
R318(医用一般科学)
广西自然科学基金2010GXNSFA013128
2013-11-18(万方平台首次上网日期,不代表论文的发表时间)
共7页
546-552