期刊专题

10.3969/j.issn.0258-8021.2012.04.001

非局部主成分分析极大似然估计MRI图像Rician噪声去噪

引用
由于MRI图像中噪声呈Rician分布,直接使用现有针对高斯噪声的去噪方法将引入误差.基于此本研究使用Rician噪声模型改进现有极大似然估计去噪的高斯模型,同时引入非局部主成分分析,在非局部区域选择灰度和纹理均具有较高相似性的像素进行最优复原估计.使用非局部主成分分析不仅克服现有局部性去噪方法模糊边界的缺陷,而且具有更高的图像细节信息复原能力.分别应用所提出的方法、局部极大似然估计去除Rician噪声方法、采用参数修正非局部均值去除Rician噪声方法、无特定噪声模型的全变差方法,对不同噪声等级和不同纹理复杂度的图像进行定性和定量的去噪实验.结果表明,所提出的方法可在保持图像细节和纹理信息的前提下有效去噪,较之现有方法效果更好.

图像去噪、Rician噪声、非局部主成分分析、极大似然估计

31

TP391(计算技术、计算机技术)

2012-11-26(万方平台首次上网日期,不代表论文的发表时间)

共6页

481-486

相关文献
评论
暂无封面信息
查看本期封面目录

中国生物医学工程学报

0258-8021

11-2057/R

31

2012,31(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn