期刊专题

10.19491/j.issn.1001-9278.2020.12.010

基于光谱数据融合和人工神经网络的汽车灯罩鉴别

引用
针对法庭科学领域对物证快速、无损、准确的检验需求,采用红外光谱原始数据和导数数据相结合的光谱数据融合技术对汽车灯罩样本进行分析.对收集的44个汽车灯罩样本采集红外谱图,采用自动基线校正、峰面积归一化、Savitzky-Golay算法平滑对谱图进行预处理,并对处理后的数据进行一阶求导,结合人工神经网络(ANN)算法构建分类模型.在径向基函数神经网络(RBF)模型中,结合主成分分析对光谱原始数据、一阶导数数据和融合的数据进行分类,分类准确率分别为81.2%、84.1%和90.9%;在多层感知器神经网络(MLP)模型中,结合主成分分析对光谱原始数据、一阶导数数据和融合的数据进行分类,分类准确率分别为84.1%、86.4%和97.7%,且在对44个汽车灯罩样本的12种品牌进行分类时,分类准确率也达到97.7%,实验结果理想.结果表明,基于红外光谱原始数据和导数数据相结合的光谱数据融合技术能够实现对汽车灯罩样本的准确分析,且满足快速、无损、准确的检验要求,可以为光谱融合技术在法庭科学领域中物证的检验提供一定参考.

汽车灯罩、光谱数据融合技术、导数光谱、人工神经网络、分类

34

TQ320.77+2

2020年中国人民公安大学基本科研业务费重点项目2020JKF307

2020-12-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

59-64

相关文献
评论
暂无封面信息
查看本期封面目录

中国塑料

1001-9278

11-1846/TQ

34

2020,34(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn