期刊专题

10.16843/j.sswc.2022.03.015

基于深度学习的湖北省土壤侵蚀空间分布

引用
区域土壤侵蚀空间分布信息对生态修复和土地利用优化决策具有重要作用,但其分析计算的空间模型尚未成熟.引入深度学习方法,利用其计算能力强和拟合效果好的特点,建立土壤侵蚀与各因子之间的复杂联系,获取高精度的土壤侵蚀强度空间分布数据.在Jupyter Notebook平台下,构建UNet++和BP神经网络框架,优选激活函数、损失函数等超参数;以湖北省土壤侵蚀空间分布真实数据作为基准,利用ADAM优化函数和交叉熵损失函数,训练记录土壤侵蚀因子深层信息的神经元;通过遥感手段获取降雨侵蚀力、土壤可蚀性、地表覆盖、植被覆盖、坡度和地形起伏度等因子作为模型输入,通过多次卷积和转置卷积计算获取土壤侵蚀强度等级空间分布数据.对比分析表明:UNet++神经网络的总体精度达到95.7%,比BP神经网络高4.3%,并克服BP神经网络存在的"椒盐"现象;UNet++神经网络在各侵蚀强度中误差分布较均匀,未呈现明显的误差聚集现象,能较好地反映土壤侵蚀分布情况.

土壤侵蚀、空间分布、深度学习、UNet++、BP神经网络

20

TP391(计算技术、计算机技术)

国家重点研发计划2017YFC05064

2022-07-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

119-125

暂无封面信息
查看本期封面目录

中国水土保持科学

1672-3007

11-4988/S

20

2022,20(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn