10.7522/j.issn.1000-694X.2022.00001
古尔班通古特沙漠灌木冠幅预测模型
古尔班通古特沙漠是中国第二大沙漠,也是中国固定和半固定沙丘主要分布区,固沙灌木种较多.冠幅不仅是反映固沙灌木可视化的重要参数,也是反映沙漠植被生长情况的重要变量.以3种沙丘(固定沙丘、半固定沙丘和流动沙丘)上主要固沙灌木为研究对象,利用12种基础模型、BP(Backpropagation Neural Network)神经网络和支持向量机(Support Vector Machine,SVM)机器学习算法建立了基于固沙灌木株高和冠长率的冠幅预测模型,同时将两种机器学习算法拟合结果与基础模型进行比较,最终选出了适合研究区的冠幅预测模型.结果表明:(1)不同沙丘类型和不同灌木种类的最优冠幅预测模型不同,且固定沙丘和半固定沙丘模型优于流动沙丘.3种沙丘类型最优拟合为M2(Quadratic Model)模型;(2)白梭梭(Haloxylon persicum)在半固定沙丘和流动沙丘上拟合的最优模型分别为M2、M7(Gompertz),沙拐枣(Calligonum mongolicum)最优模型为M2,蛇麻黄(Ephedra distachya)和油蒿(Artemisia ordosica)在半固定沙丘和流动沙丘上拟合较优模型分别为M2、M7.总体来说,基础模型M2和M7可以较好地预测不同类型的灌木冠幅值;(3)基于径向基(Radial Basis Function)核函数的支持向量回归机的冠幅预测模型明显优于BP神经网络模型.
株高、冠幅、冠长率、基础模型、BP神经网络、SVM支持向量机
42
Q948.1(植物学)
甘肃省自然科学基金;国家自然科学基金;甘肃农业大学盛彤笙创新基金
2022-09-28(万方平台首次上网日期,不代表论文的发表时间)
共12页
139-150