期刊专题

10.7522/j.issn.1000-694X.2022.00001

古尔班通古特沙漠灌木冠幅预测模型

引用
古尔班通古特沙漠是中国第二大沙漠,也是中国固定和半固定沙丘主要分布区,固沙灌木种较多.冠幅不仅是反映固沙灌木可视化的重要参数,也是反映沙漠植被生长情况的重要变量.以3种沙丘(固定沙丘、半固定沙丘和流动沙丘)上主要固沙灌木为研究对象,利用12种基础模型、BP(Backpropagation Neural Network)神经网络和支持向量机(Support Vector Machine,SVM)机器学习算法建立了基于固沙灌木株高和冠长率的冠幅预测模型,同时将两种机器学习算法拟合结果与基础模型进行比较,最终选出了适合研究区的冠幅预测模型.结果表明:(1)不同沙丘类型和不同灌木种类的最优冠幅预测模型不同,且固定沙丘和半固定沙丘模型优于流动沙丘.3种沙丘类型最优拟合为M2(Quadratic Model)模型;(2)白梭梭(Haloxylon persicum)在半固定沙丘和流动沙丘上拟合的最优模型分别为M2、M7(Gompertz),沙拐枣(Calligonum mongolicum)最优模型为M2,蛇麻黄(Ephedra distachya)和油蒿(Artemisia ordosica)在半固定沙丘和流动沙丘上拟合较优模型分别为M2、M7.总体来说,基础模型M2和M7可以较好地预测不同类型的灌木冠幅值;(3)基于径向基(Radial Basis Function)核函数的支持向量回归机的冠幅预测模型明显优于BP神经网络模型.

株高、冠幅、冠长率、基础模型、BP神经网络、SVM支持向量机

42

Q948.1(植物学)

甘肃省自然科学基金;国家自然科学基金;甘肃农业大学盛彤笙创新基金

2022-09-28(万方平台首次上网日期,不代表论文的发表时间)

共12页

139-150

暂无封面信息
查看本期封面目录

中国沙漠

1000-694X

62-1070/P

42

2022,42(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn