10.7621/cjarrp.1005-9121.20210830
多时相极化SAR数据的旱地作物分类研究
[目的]及时、准确地获取旱地作物类型、种植面积及空间分布信息,可为农业生产管理,国家粮食政策提供重要依据.文章主要是对河北省冀州市棉花、玉米、水体和建筑进行分类,比较不同时相及分类方法下RADARSAT-2数据对4种地物的分类精度.[方法](1)计算得到每个时相(2018年7月14日、8月7日、9月24日)全极化RADARSAT-2数据的39个特征;(2)结合随机森林分类器比较不同分解方法(Freeman分解、Yamaguchi分解、MCSM模型和Cloud分解)得到的特征对旱地作物的分类精度影响;(3)分析参与分类的特征数量和时相对分类精度的影响;(4)将多时相多特征相结合,确定研究区内旱地作物的最佳识别方案.[结果]不同分解方法得到的特征越多、分类精度越高;就仅使用单景影像而言,在9月24日(玉米成熟期早期、棉花吐穗期中期)总体分类精度最高;不同分解方法得到的极化特征之间有一定的相关性,同一时相下,增加参与分类的极化特征数量不能有效提高分类精度;使用3个时相上117个极化特征,结合随机森林分类器,可以得到最佳分类精度(总体分类精度达92.89%,Kappa系数为0.8859).[结论]结合多时相与多特征相RADARSAT-2数据,能够有效提高复杂种植结构下旱地作物的识别精度,该研究可为旱地作物种植面积的快速提取提供参考.
旱地作物;极化分解;多分量散射模型;分类识别;随机森林
42
S17(农业地理学)
中央级公益性科研院所基本科研业务费专项"基于多时相极化SAR数据的旱地作物散射机制研究";中央级公益性科研院所专项资金项目"基于合成孔径雷达数据的旱地作物识别与长势监测研究"
2021-10-22(万方平台首次上网日期,不代表论文的发表时间)
共11页
260-270