10.7621/cjarrp.1005-9121.20160804
基于SAR遥感的北方旱地秋收作物识别研究
在我国北方旱地秋收作物生长关键期,云雨天气影响较大,无法及时、有效地获取光学遥感数据,因此利用雷达遥感进行旱地作物识别研究非常必要。文章以河北省衡水市为研究区,选择6期RADA-RAST-2全极化影像作为数据源,分类方法为随机森林法。首先通过对比不同时相间的组合结果,优选出了研究区典型秋收作物(玉米、棉花)的最佳识别时相及组合方式。其次,提取最优识别时相的后向散射信息、纹理信息、极化分解等3部分信息,依据信息间相互组合的结果及随机森林算法对变量的重要性评价,文中对上述3部分信息进行了重要性评估。结果表明:利用SAR识别旱地秋收作物时应着重关注作物生长前期的时相,其中玉米在6月27日单一时相下就可获得90%以上的高精度;棉花面积小、地块破碎,但通过6月3日与6月27日两个时相的结合也得到了70%以上的精度。在玉米识别中极化信息具有较大的贡献,极化变量的加入主要增加了玉米和建筑用地的可分离性,与单纯利用后向散射信息分类相比精度提高了近7%;同样,纹理信息和极化分解信息的加入也使棉花的精度提高了3%。最后,利用随机森林算法对变量的重要性评价机制,优选出对玉米识别最为重要的5个变量,依次为: VH、 Alpha、 Yamaguchi4-Odd、Freeman-Vol和Mean ( HV)。该研究利用雷达数据进行旱地作物识别,验证了雷达影像对旱地秋收作物的识别能力,不仅保证了数据获取与天气状况的独立性,还凭借SAR独有的数据获取方式,为光学数据提供了补充。
合成孔径雷达(SAR)、旱地农作物、分类、随机森林、变量优选
37
S127(农业物理学)
国家科技重大专项项目“高分农业遥感监测与评价示范系统”09-Y30B03-9001-13/15
2016-10-14(万方平台首次上网日期,不代表论文的发表时间)
共10页
27-36