期刊专题

10.3864/j.issn.0578-1752.2017.05.006

一年一季农作物遥感分类的时效性分析

引用
[目的]基于遥感影像的作物分类研究是提取作物种植面积和长势分析及产量估测的基础,也是推动现代化农业快速发展的动力.研究结果可为农业等相关部门掌握农情,进行宏观调控提供依据.目前,农业遥感研究主要集中于中低分辨率遥感影像,影响植被信息提取的精度,应用高分辨率多时相遥感影像和选择最优分类方法可以提高植被信息提取精度.明确农作物遥感分类的时效性与最优分类方法,为快速、准确地获取作物空间分布数据和农情定量遥感监测提供依据.[方法]基于黑龙江省虎林市2014年5-10月覆盖完整生长期的20幅遥感影像,构建16m分辨率NDVI时间序列曲线,建立决策树分类模型,通过分类影像进行系列阈值分割,并结合辅助背景数据及专家知识,成功提取虎林市土地利用覆被信息;利用20幅影像依次波段合成的方式进行作物分类,明确最优时相;将提取的耕地范围作为作物分类规则,并与未提取耕地范围的作物分类结果进行比较;同时通过最大似然法、马氏距离法、神经网络法、最小距离法、支持向量机、波谱角分类法、主成分分析法多种分类方法进行作物分类;利用农业保险投保地块数据进行精度验证.[结果](1)7月初、7月末到8月初、9月末是研究区一年一季作物遥感分类的3个关键时相;(2)决策树分类方法在提取土地利用覆被信息的结果中精度最高,总体精度90.24%,Kappa系数0.87;(3)6月初与7月初2幅影像结合采用最大似然法对作物进行分类的总体精度高达94.01%,Kappa系数为0.79,6月初与7月初的影像结合,可以解决作物分类的时效性;(4)结合9月21日的影像,总体精度进一步提高,大豆分类精度明显提高,最终确定最大似然法为最优作物分类方法.[结论]通过遥感数据能实现在7月上甸对作物进行精准分类,拓展了遥感数据在农业领域的应用价值,对一年一季地区作物快速分类与农情定量遥感监测有重要意义.

时间序列遥感影像、作物分类、时效性、决策树、最大似然法

50

TN9;TP3

国家自然科学基金40801167;黑龙江省普通高等学校新世纪优秀人才培养计划1254-NCET-002;黑龙江省自然科学基金D201404

2017-05-04(万方平台首次上网日期,不代表论文的发表时间)

共10页

830-839

暂无封面信息
查看本期封面目录

中国农业科学

0578-1752

11-1328/S

50

2017,50(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn