期刊专题

10.13304/j.nykjdb.2021.0300

基于卷积神经网络的水稻虫害识别方法

引用
为解决人工识别水稻虫害难度大、费时费力的问题,研究了一种自动识别水稻虫害的方法.选取2 500张红袖蜡蝉、稻绿蝽、稻螟蛉、点蜂缘蝽、大螟图片建立数据库,利用深度卷积神经网络提取水稻虫害数据集特征,采用随机梯度下降法训练,得到最优权重文件.测试训练好的模型,并对比Faster-RCNN、SSD和YOLOv3算法的效果.结果表明,YOLOv3算法的平均精度最高,其在红袖蜡蝉、稻绿蝽、稻螟蛉、点蜂缘蝽、大螟5种水稻虫害中分别为97.40%、88.76%、85.74%、92.96%、94.78%,五类水稻虫害mAP为91.93%.与Faster-RCNN算法相比,平均准确率高1.43个百分点,单张图像检测耗时减少853.68 ms;与SSD算法相比,平均准确率高5.56个百分点,单张图像检测耗时减少2.9 ms.选择5类比较具有代表性的水稻虫害图片进行测试,对于叶片遮挡目标和相似背景等情况,YOLOv3算法能够正确识别不会出现漏检错检,且识别准确率大于98%.将YOLOv3算法引入田间复杂情况下的水稻虫害识别是可行的,具有较高的平均准确率以及较快的检测速度,能够准确识别水稻虫害,这对于水稻虫害防治和田间喷药等方面具有重要意义.

卷积神经网络;水稻虫害;Faster-RCNN;SSD;YOLOv3

23

S435.11;TP391.4(病虫害及其防治)

江西现代农业科研协同创新专项JXXTCX201801-03,JXXTCXNLTS202106

2021-12-07(万方平台首次上网日期,不代表论文的发表时间)

共11页

99-109

暂无封面信息
查看本期封面目录

中国农业科技导报

1008-0864

11-3900/S

23

2021,23(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn