期刊专题

10.13733/j.jcam.issn.2095-5553.2023.02.025

基于深度学习的复杂自然环境下桑树枝干识别方法

引用
在复杂自然环境下完成桑树枝干识别是实现桑叶采摘机智能化的关键部分,针对实际应用中光照条件变化多、桑叶遮挡和桑树分枝多等问题,提出一种基于深度学习的复杂自然环境下桑树枝干识别方法.首先,采用旋转、镜像翻转、色彩增强和同态滤波的图像处理方法扩展数据集,以提高模型的鲁棒性,通过Resnet50目标检测网络模型以及相机标定获得照片中所需的桑树枝干坐标,通过试验发现当学习率设置为0.001,迭代次数设置为600时模型的识别效果最优.该方法对于复杂自然环境中的不同光照条件具有良好的适应性,能够对存在多条分支以及被桑叶遮挡的桑树枝干进行识别并获取坐标信息,识别准确率达到87.42%,可以满足实际工作需求.

桑叶采摘、图像处理、深度学习、目标检测

44

TP391.4(计算技术、计算机技术)

四川省宜宾市蚕桑产业高效生产技术创新与集成示范项目;重庆市博士研究生科研创新项目

2023-03-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

182-188

暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

44

2023,44(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn