10.13733/j.jcam.issn.2095-5553.2021.07.23
高效运算网络在作物叶部病害识别中的研究
卷积神经网络模型参数冗余太大,收敛速度慢,对硬件计算资源要求过高,导致适用性差,不适合布署在边缘侧的嵌入式设备上,且大多数识别模型鲁棒性差,在复杂环境下识别效果不佳.为解决以上问题,设计两个基本模块用于搭建病害识别网络:一是高效残差模块,采用残差和多种卷积分解结构,在保证识别精度的情况下简化模型;二是恒等残差模块,用于加深网络层次,提升网络的拟合能力和抗干扰能力.搭建的高效运算网络对简单背景下的多种作物病害进行识别,训练集的准确率达到99.37%,验证集的准确率达到98.48%.优化损失函数后,训练集和验证集的准确率均在99%以上,收敛速度加快,参数内存仅3.15 MB,降低硬件计算力(FLOPs)的要求到1.71 M.将提出来的模型在复杂背景下进行测试,识别准确率均达到92.6%,且硬件计算力需求,参数内存,识别精度均优于MobileNet和ResNet,为实时检测作物病害提供参考.
作物病害识别、高效运算网络、边缘计算、鲁棒性
42
S24(农业电气化与自动化)
河北省重点研发计划项目;石家庄市重点研发计划项目
2021-09-22(万方平台首次上网日期,不代表论文的发表时间)
共6页
156-161