期刊专题

10.13733/j.jcam.issn.2095-5553.2020.06.028

基于机器视觉的油茶果果壳与茶籽分选方法研究

引用
在油茶果脱壳后,采用机械方法分选的茶籽中混杂着一些果壳,由于两者大小和比重相似,其外观差异成为分选的重要依据.本文提出一种综合考虑油茶果颜色、纹理、几何形状多种图像特征的分选方法,结合机器视觉技术实现油茶果果壳与茶籽的准确分选.通过有效的图像预处理手段提取物料样本轮廓,并计算轮廓内的颜色、纹理以及形状特征信息,分别比较了通过网格搜索法(Grid Search,GS)、粒子群算法(Particle Swarm Optimization,PSO)和遗传算法(Genetic Algorithm,GA)寻优而建立的三种支持向量机(Support Vector Machine,SVM)分类模型,最终确定GS-SVM模型最佳,其模型训练集识别率为94.44%,测试集识别率为93.33%,结果表明将此方法应用于油茶果果壳与茶籽分选是可行的,为油茶果果壳与茶籽分选加工技术提供了一定的理论基础.

机器视觉、油茶果、分选、支持向量机、图像特征

41

TP391.4(计算技术、计算机技术)

湖北工业大学科研启动基金项目;湖北省重点研发计划项目

2020-08-05(万方平台首次上网日期,不代表论文的发表时间)

共8页

171-178

暂无封面信息
查看本期封面目录

中国农机化学报

2095-5553

32-1837/S

41

2020,41(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn