基于三维深度神经网络的大规模神经元形态表征与检索方法
高效准确的相似神经元检索方法是神经元形态分析的重要支撑.随着高精度显微成像、神经元示踪、人工智能等技术的发展,近些年出现了若干基于机器学习的神经元形态计算与分析方法,这些研究主要包括对传统神经元形态度量指标的统计分析,以及将神经元形态二维投影与深度学习结合的神经元量化表征方法,在神经元的特征提取、分类、相似检索等任务中均取得了不错的效果.不过随着越来越多的三维神经元数据被重建出来,以上方法都无法满足当前背景下对大规模神经元形态数据的细粒度表征、检索与分类需求.为此,本文提出了基于三维深度神经网络的大规模神经元形态表征与检索方法.首先,为了将神经元的三维空间拓扑结构转换成适用于深度神经网络的形式,我们设计了神经元空间形态的体素转换方法,将原始的神经元重构文件转换成三维体素的形式,极大地保留了神经元的三维空间拓扑结构.随后,考虑到当前神经元数据缺乏精细的分类标准,本文设计了基于三维卷积自动编码器的神经元形态表征算法,应用深度神经网络无监督地学习神经元体素数据的结构特点,得到神经元形态的量化表征,并以此设计端到端的相似神经元快速检索算法.最后通过实验验证本文所提出的方法,在9万余神经元数据中检索形态相似的神经元,实验结果显著优于其他基于神经元量化表征的检索方法.实验表明,本文方法可以更高效准确地检索相似神经元,为神经元的形态学分析、神经元单细胞分类等相关研究的关键问题提供支持.
神经元形态学、深度神经网络、三维体素、特征表达
51
国家自然科学基金61902310
2022-03-21(万方平台首次上网日期,不代表论文的发表时间)
共13页
2089-2101