深度学习在生态资源研究领域的应用:理论、方法和挑战
生态资源是人类生存发展和自我实现的重要物质基础,对其进行深入全面的研究和理解关系到人类社会的可持续发展.随着观测技术的进步,长时间、跨尺度、海量异构多源数据的获取能力得到了显著提升,生态资源研究进入了数据驱动的新时代.传统的统计学习和机器学习算法在海量数据面前存在饱和问题.深度学习作为高维非线性复杂特征自动提取的新手段,对海量数据具有不饱和性,正成为学界和工业界数据处理的新引擎.为推动深度学习在生态资源领域的应用,文章首先介绍了深度学习的理论与生态资源研究的联系,以及常用工具和数据集.其次,通过物种识别、作物育种和植被制图三个案例介绍了深度学习在分类识别、检测定位、语义分割和实例分割任务中的具体实践,以及图神经网络在生态资源领域中典型的空间离散点数据上的应用场景.最后,综合大数据时代下生态资源数据的特点和深度学习的发展现状,总结了深度学习在生态资源领域发展的挑战和机遇.希望通过不同学科之间的交叉和人才培养,能够促进生态资源领域数据的标准化和共享化,提升算法的普适性和解释性,并借助于硬件的发展最终实现应用的丰富化和智能化.
生态资源、深度学习、神经网络、大数据、理论与工具、应用与挑战
50
中国科学院战略性先导科技专项A类项目;国家自然科学基金项目
2020-12-10(万方平台首次上网日期,不代表论文的发表时间)
共20页
1354-1373