期刊专题

10.19360/j.cnki.11-3303/g4.2021.02.006

基于卷积神经网络的考场不当行为识别

引用
将人工智能技术用于监控和识别考场中考生的不当行为,可以减轻监考人员的压力,提高考试的有效性、公平性和严肃性.本研究提出考场不当行为自动识别方案设想,以YOLOv3算法为核心,使用模拟考试场景视频数据开展自动识别实验,对考场不当行为自动识别的可行性和可靠性进行了检验.结果表明,考场不当行为识别的准确率高、速度快,方案可行且可靠,识别效果达到应用要求,对推动我国考试管理的智能化发展具有重要意义.

考试管理、考场不当行为、人工智能、标准化考场

G405(教育学)

2021-02-25(万方平台首次上网日期,不代表论文的发表时间)

共8页

56-62,94

暂无封面信息
查看本期封面目录

中国考试

1005-8427

11-3303/G4

2021,(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn