期刊专题

基于机器学习的水稻地上生物量遥感反演

引用
地上生物量是水稻重要的生理生化参数,其估测模型对长势监测、产量估计等具有重要的意义.高光谱遥感技术具有光谱分辨率高、蕴含信息丰富、高效无损的特点,能够大范围精准监测作物生长信息,在现代化农业中得到了广泛的应用.本文基于ASD FieldSpec 4光谱辐射计获取的水稻的冠层光谱反射率数据,通过光谱转换获得其红边参数、植被指数等参数,利用K近邻回归(KNN)、支持向量机(SVM)、随机森林(RF)等方法开展水稻生物量估测研究,实验结果表明:其中RF建模集精度最高:R2为0.98,RMSE为94.6g·m-2,CV为11.7%,验证集精度:R2为0.89,RMSE为194.1g·m-2,CV为23.5%,且三种机器学习建模的精度R2均高于0.86,达到较好的反演效果.

地上生物量、水稻、光谱反射率、红边参数、植被指数

S127(农业物理学)

2020-11-06(万方平台首次上网日期,不代表论文的发表时间)

共2页

228-229

暂无封面信息
查看本期封面目录

中国科技纵横

1671-2064

11-4650/N

2020,(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn