10.16708/j.cnki.1000-758X.2018.0043
结合自组织映射网络及三角形算法的星图识别方法
三角形方法是最经典且应用最广的星图识别方法之一,但是存在搜索范围大、匹配冗余、抗噪能力弱等问题.将神经网络技术应用到星图识别过程中,结合自组织映射网络(SOM)优秀的分类能力和三角形算法可靠的角距匹配能力,提出了一种新的识别方法.该方法基于邻近星的分布来构建每颗导航星的特征向量,将其作为SOM网络的输入向量,通过训练得到具有分类识别功能的网络及相应的三角形库.识别阶段,输入待识别星的特征向量,网络输出识别类,在该类对应的三角形库中应用三角形算法查找匹配三角形,完成星图识别.试验发现该方法减小三角形搜索范围、实现快速匹配的同时,提高了识别系统的抗噪能力,在全天识别过程中平均识别时间低于5ms,识别率在噪声标准差为0.025时仍高达99%.
恒星敏感器、星图识别、神经网络、自组织映射网络、三角形算法
38
TP391(计算技术、计算机技术)
2018-09-19(万方平台首次上网日期,不代表论文的发表时间)
共10页
1-10